Hamilton Cycles in Random Geometric Graphs

نویسندگان

  • József Balogh
  • Béla Bollobás
  • Mark Walters
چکیده

We prove that, in the Gilbert model for a random geometric graph, almost every graph becomes Hamiltonian exactly when it first becomes 2-connected. This proves a conjecture of Penrose. We also show that in the k-nearest neighbour model, there is a constant κ such that almost every κ-connected graph has a Hamilton cycle.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Probability HAMILTON CYCLES IN RANDOM GEOMETRIC GRAPHS

We prove that, in the Gilbert model for a random geometric graph, almost every graph becomes Hamiltonian exactly when it first becomes 2-connected. This answers a question of Penrose. We also show that in the k-nearest neighbour model, there is a constant κ such that almost every κ-connected graph has a Hamilton cycle.

متن کامل

A Brief Introduction to Hamilton Cycles in Random Graphs

We survey results concerning Hamilton cycles in random graphs. Specifically, we focus on existence results for general and regular graphs, and discuss algorithms for finding Hamilton cycles and solving related problems (that succeed with high probability).

متن کامل

On covering expander graphs by hamilton cycles

The problem of packing Hamilton cycles in random and pseudorandom graphs has been studied extensively. In this paper, we look at the dual question of covering all edges of a graph by Hamilton cycles and prove that if a graph with maximum degree ∆ satisfies some basic expansion properties and contains a family of (1−o(1))∆/2 edge disjoint Hamilton cycles, then there also exists a covering of its...

متن کامل

Random intersection graphs and their applications in security, wireless communication, and social networks

Random intersection graphs have received much interest and been used in diverse applications. They are naturally induced in modeling secure sensor networks under random key predistribution schemes, as well as in modeling the topologies of social networks including common-interest networks, collaboration networks, and actor networks. Simply put, a random intersection graph is constructed by assi...

متن کامل

Packing, Counting and Covering Hamilton cycles in random directed graphs

A Hamilton cycle in a digraph is a cycle passes through all the vertices, where all the arcs are oriented in the same direction. The problem of finding Hamilton cycles in directed graphs is well studied and is known to be hard. One of the main reasons for this, is that there is no general tool for finding Hamilton cycles in directed graphs comparable to the so called Posá ‘rotationextension’ te...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1983